Mechanical engineers should have electronics foundations?

I am a ME sophomore, when I look at senior projects, there are electric car, or AI based projects. So does it mean ME student should know electronics, like EE areas? More specifically, should mechanical engineers have electronics foundations, or in what extent? I think I begin to confuse how to differentiate between ME and EE, I know they

are totally separated domains, but there are many mechanical devices are powered by

electricity.

please advise. thanks!!

Reply to
jrefactors
Loading thread data ...

electric

You have hit upon a most important point when you say, "there are many mechanical devices powered by electricity," and this is a key observation. Your previous statement, "they are totally separate domains," is just as wrong as can be. Mechanical engineers have needed to understand electrical machines, specifically motors and generators, for many years, and today that need is more critical than ever before. The development of power electronics has made it possible to do things with electrical power that allow the development of electrical forces and torques in ways that were beyond imagination just a decade ago. Without question, you as an ME student most seriously need to have an understanding of basic electromagnetics and electronics, in addition to all the traditional ME topics such as mechanics, machine design, and thermodynamics. It cannot be avoided.

I spent many years as an ME faculty member, and now I work as a researcher in a US Navy lab where I do work in electromechanical systems. I can tell you without any doubt that you absolutely must learn electromechanical systems in your undergraduate curriculum or you will be out of date when you graduate. That is what is happening today.

Reply to
Dr. Sam

Dr. Sam has offered an interesting response and I am in general agreement that ME's should gain an appreciation of the electrical and electronic systems that are likely to be associated with your mechanical systems. You should also gain a general appreciation of other science areas.

By "gaining an appreciation" I consider that this is at the minimum to understand the terminology, basic premises and how they relate to the mechanical aspects you deal with.

As a Systems Engineer (from the electrical and electronic pools) I have learned how to cope with some basic design work in many of the other disciplines that I have worked with. This helps because, having a broader view of the overall system, I can often suggest a more efficient direction for each of the discipline areas to take to achieve a better overall system.

The benefits of increasing your breadth of knowledge of these other aspects will make you more valuable in future job markets too.

Reply to
Paul E. Bennett

Well, I can tell you that as an ME Junior, last year, my sophomore year, I was required to take Electrical Fundamentals 1 (DC circuits) and went ahead and took E-Funds 2 (AC circuits) even though it wasnt' required. Learn the stuff! I used it a lot just this last term in a design course building a robot. I needed that knowledge of DC voltage, vs. amps. vs Ohms to figure out my best range of voltage input for my motors. Plus it's just cool s**t. Especially the 3-phase stuff. If you like systems and how they work, you'll like it. Probably. And those two classes anyway were really straightforward. Do you have no req's in your soph year? k wallace

Reply to
k wallace

Dear jrefactors:

If your intent is to design moving things, absolutely. The broader your knowledge (as long as you are comfortable with it) the greater your value as an employee.

Originally, there were no engineers, only scientists. Then there were engineers with NO specialization. There are few hard-and-fast rules. If you will be designing ductwork and piping runs all your life, no you don't

*need* electronics.

In my opinion, the only interesting devices are ones that combine elements of both mechanical and electrical expertise in their design.

Learn control theory. Learn opamps, and linear circuits. Learn a bit about electrical power. It can pay off.

David A. Smith

Reply to
N:dlzc D:aol T:com (dlzc)

Mechanical engineering is more than what you seem to think. I am a retired PE who designed machinery for the rolling mill industry. That machinery was powered by either hydraulics or electric motors. I had to know how much power was required. In addition, the equipment had to fit into an area in a building located on soil which meant I had to know a little about architecture and geology because of equipment size and weight. The size and weight of that machinery meant, in some cases, that it had to be shipped across land and/or water and under/over bridges. Mechanical engineering requires awareness and knowledge of many engineering disciplines. You may not practice the other disciplines, but you must have the basic knowledge of those disciplines that may involve your field. Believe me, mechanical engineering touched just about every engineering discipline at one time or another.in my career.

Jim Y

Reply to
Jim Y

You'll need both. Mechanical devices nearly always involve electricity. They are driven by electric motors and controlled by electrical controls. Most places I have worked (over the last 18 years) have required that I do my own electrical design and programming.

You need to know about all electrical fundamentals, including three-phase power. You need to know about all types of induction motors and about stepper- and servo-motors and their related drives. You need to know about relay logic, motor starters, speed controls, PLC's, all types of sensors, operator interface devices (buttons, switches, readouts, touch-screens, etc.), analog sensing and any other types of controls. You also need to know about transformers and distribution networks.

Actual knowledge of board-level electronics is very helpful. You probably won't be called on to design an entire complex electronic circuit much, but knowing how they work helps you troubleshoot problems and interface electronic devices with each other. You should have a good grounding in how transistors work, op amps, a general notion of TTL and CMOS logic, how a microprocessor works and a cursory knowledge of instruction code. You should know how to use a VOM, an oscilloscope and a logic probe. Learn about what "sinking" and "sourcing" circuits are and their implications. Basically, if you are just as comfortable using a transistor to switch something as you are using a switch or relay, then you're doing pretty well.

Don't let all this scare you too much. You won't be expected to know everything when you first get out of school. A lot of this you'll pick up in the field.

Don Kansas City

Reply to
Don A. Gilmore

"Don A. Gilmore" wrote in news: snipped-for-privacy@individual.net:

As I struggled with the various weirder aspects of electric motors and the like, my only consolation was the thought of the poor electrical engineers on my course having to learn about the the thermodynamics of steam engines.

As it turns out a reasonable knowledge of power electrics and semiconductors has been very useful in my career, I certainly do not regret having learned about them.

Cheers

Greg Locock

Reply to
Greg Locock

PolyTech Forum website is not affiliated with any of the manufacturers or service providers discussed here. All logos and trade names are the property of their respective owners.