adaptive control tuning parameter

Normally, Lyapunov based adaptive control design guarantees the global boundedness of estimated paramter and all the closed-loop states. But
in the system parameter estimation--the parameter adaptation/update law, e.g.,
\dot \theta(t)=-sgn(kp)\gamma_1e(t)y(t)
there is always a tuning coefficient, i.e., \gamma, which theoritically has nothing to do with stability. However, actually, if this tuning coefficient is chosen to be too large, the closed-loop system will blow up.
Any body knows why? Somebody tells me that discrepancy between theory and simulation is perhaps that the theory is for a true continuous time system while the simulation only approximates a continuous time system. But even for discrete-time system, the same problem exist, so I am confused....
Add pictures here
<% if( /^image/.test(type) ){ %>
<% } %>
Add image file
Upload is a website by engineers for engineers. It is not affiliated with any of manufacturers or vendors discussed here. All logos and trade names are the property of their respective owners.