# Just start to learn Fracture Mechanics

• posted
Hi Experts,
I am reading "BASIC fracture mechanics" which is a very simple book.
You must know this expression
sigmaY = KI/sqrt(2*pi*r)*cos(thita/2)*(1+sin(thita/2)*sin(3*thita/2))
and I think this is symmetric about thita = 0.
My questions:
Is the expression dirived from a rectangular (infinite or finite)
plate with a crack at the center and under a symmetric load system
case? There are different expressions For other cases, say
non-symmetric cases?
• posted
In article , victor writes
There is no 'geometry' here. The expression you quote is leading term of a mathematical series or expansion for stress in an elastic material that dominates the rest very close to the crack tip, i.e. as r approaches zero. The other terms in the series expansion involve other powers of r such as r^0, r^0.5 and so on, that become negligible as r approaches zero. The crack tip 'knows' about the geometry and loading through KI only. A finite plate with a central crack under tensile loading has a different KI to a plate with an edge crack with the tensile stress.
Yes, the loading of a crack is in general a combination of three modes of loading: symmetric opening or Mode I, as above, asymmetric sliding or Mode II and out of plane tearing or mode III. Modes II and III each have similar expression for the components of stress (and also displacement) that dominate very close to the crack tip. There are associated Mode II and Mode III stress intensity factors: KII and KIII. Hope this helps. Regards, Martin
• posted
Nobody answer me :( The book only shows a crack tip and some expressions including the above one, I want to know if the distribution of the stresses near the crack tip is the same or not for different loading and other conditions.
• posted